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Introduction

The design of reinforcement learning solutions to many problems
artif cially constrain the action set available to an agent, in order
to limit the exploration/sample complexity. While exploring, if
an agent can discover new actions that can break through the con-
straints of its basic/atomic action set, then the quality of the learned
decision policy could improve. On the f ipside, considering all pos-
sible non-atomic actions might explode the exploration complex-
ity. We present a potential based solution to this dilemma, and
empirically evaluate it in grid navigation tasks. In particular, we
show that the sample complexity improves signif cantly when ba-
sic reinforcement learning is coupled with action discovery. Our
approach relies on reducing the number of decision-points, which
is particularly suited for multiagent coordination learning, since
agents tend to learn more easily with fewer coordination problems
(CPs). To demonstrate this we extend action discovery to multi-
agent reinforcement learning. We show that Joint Action Learners
(JALs) indeed learn coordination policies of higher quality with
lower sample complexity when coupled with action discovery, in a
multi-agent box-pushing task.

Reinforcement learning (RL) problems are modeled as Markov
Decision Processes or MDPs [4]. An MDP is given by the tu-
ple {S, A, R, T}, where S is the set of environmental states that
an agent can be in at any given time, A is the set of actions it
can choose from at any state, R : S x A — R is the reward
function, i.e., R(s,a) specifes the reward from the environment
that the agent gets for executing action a € A in state s € S}
T:S x Ax S — [0,1] is the state transition probability function
specifying the probability of the next state in the Markov chain.
The agent’s goal is to learn a policy 7 : S +— A that maximizes the
sum of discounted future rewards from any state s, given by,

V7(s) = Er[R(s, m(s)) +7R(s", m(s") +7*R(s", m(s")) +.. ]

where s, s, s”, ... are samplings from the distribution 7" following
the Markov chain with policy 7, and v € (0,1) is the discount
factor.

A common method is to learn an action-value function, Q(s, a),
using an on-policy method called Sarsa, given by

Q(st;ar) — Q(st,ar) + afrepr + YQ(s141, ar1) — Q(st, ar)]
where o € (0, 1] is the learning rate, 71 is the actual environmen-
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tal reward and s¢11 ~ T'(s¢, as, .) is the actual next state resulting
from the agent’s choice of action a; in state s;.

Action discovery

In reinforcement learning problems, the atomic action set, Ao, is
usually fxed. However, in many cases new actions that are neither
included in Ao, nor precluded by the agent’s capabilities, may be
able to improve the agent’s performance by (a) reducing the number
of steps to the goal, or the total solution cost, (b) reducing the cost
of exploration by connecting topologically distant states with new
actions, and (c) making the goal-directed behavior more natural,
i.e., less constrained from a design perspective.

We renounce the innate meaning of an action, and assume it to
simply stand for a vehicle of state transition. As such, we repre-
sent an action by a.. to mean that the intended purpose of this
action is to transition from state s to state s’. To accomodate non-
determinism in the effect of an action, we can now redef ne the
transition function 7" as T'(s, a4, s”) to stand for the probability
that if the agent acts with the intention of transitioning from s to s’,
then it ends up in state s”. Therefore, T'(s, asy, s’) is the probabil-
ity of success of this action. In this paper, however, we focus on the
deterministic cases, i.e., where T'(s, as,, s') is either 1, or the ac-
tion a is infeasible due to physical limitations of the agent or the
environment, for all s, s’. It is useful to deal with both possibilities
uniformly, with a cost function.

We assume that for a given domain, a cost function ¢ : S x
S +— R, is always available, such that c(s, s") gives the cost of
executing an action that would take an agent from state s to state
s’ i€, azq. If c(s, s") < oo, this simply means that there is some
action (whether atomic or newly discovered) that takes the agent
from state s directly to state s’. However, if (s, s") = oo, then no
such action exists. For actions outside the atomic action set (Ao),
and having a f nite cost, we do not assume that a reward sample for
such an action is available unless this action is actually executed.
Hence the frst time that such an action is discovered the reward is
estimated on the basis of the actual rewards 71, 72.

Clearly, accepting every newly discovered action into the set of
actions will be expensive for learning. For instance, in a grid of
size n X n, there may be O(n2) such new actions, per state, i.e.,
potentially O(n*) actions to contend with. Accomodating such a
large number of actions will impact the exploration and reduce the
learning rate. Fortunately, many of these actions may be needless
to explore, e.g., if they lead away from the goal. It is possible to
estimate the value potential of a state, @, precisely for this purpose.
Potential functions, ®(s), have been used before, to shape rewards
and reduce the sample complexity of reinforcement learning [3].
In this paper, we use such functions to informatively select among
newly discovered actions.
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Figure 1: a lllustration of the action discovery criterion. b Navigation map for single agent experiment. Sarsa nds the solid path
while Sarsa AD nds the dotted path. ¢ Sample complexities in single agent experiment. d Sample complexities in multi agent

box pushing experiment.

To illustrate our heuristic selection procedure for newly discov-
ered actions, consider an agent that has transitioned through suc-
cessive states s1, S2, and s3, during some episode, ¢ (Figure 1(a)).
The actions that it has executed to make these transitions may be
atomic actions (i.e., in Ap), or previously discovered new actions,
in the current set A;(.). At state s3, the agent determines if there
exists an action that could have transitioned it directly from s; to
s3, 1.e., whether ¢(s1, s3) < oco. If this is true and this action did
not exist in A;(s1), then a new action has been discovered. This
action, as, s, is worth exploring (and hence added to A:(s1)) if

YD (s5) > (14 8)y 1" B (s2)

where ¢ is a slack variable guiding the degree of conservatism in ac-
cepting new actions. Note that new actions merely facilitate reach-
ing the goal, but they are not necessary for the agent to reach the
goal. We call the above version of Sarsa, Sarsa-AD (Sarsa with
Action Discovery).

Usually sample/experience complexity in RL is measured by the
number of decisions that the agent has to make in each episode. The
problem with this measure in the context of our work is that it is
not only affected by learning, but also by action discovery. Clearly,
Sarsa-AD will learn to make fewer decisions than Sarsa, by virtue
of action discovery. However, Sarsa-AD makes fewer decisions at
the expense of increasing the number of choices (i.e., available ac-
tions) at each decision point. Therefore, a more ref ned measure
of sample complexity for Sarsa-AD would be the sum of the num-
ber of choices available across all decision points in each episode.
Figure 1(c) shows the above measure of sample complexity (95%
conf dence intervals over 20 runs) for Sarsa-AD (with various 9),
compared to basic Sarsa, on the navigation task in the map shown
in Figure 1(b). We see a statistically signif cant advantage of Sarsa-
AD over Sarsa, especially for low .

Multi agent Learning with Action Discovery

Our results so far indicate a benef cial impact of action discovery on
exploration complexity even though it comes at a cost to decision
complexity, so much so that the overall sample complexity is sig-
nif cantly lower than in regular reinforcement learning. However,
a sterner test for this hypothesis is in a multi-agent system where
the decision complexity grows exponentially with the number of
agents, creating the possibility that any augmentation of the action
set (by discovery) may dominate the sample complexity.

In order to test the hypothesis that action discovery is benef cial
to the sample complexity (combined over all agents) in a multi-
agent learning (MAL) task, we adopt the Joint Action Learning
algorithm [2]. For JALs, the decision complexity is clearly ex-
ponential in the number of agents, n, since each agent maintains
a ()-value for each joint-state s and the entire joint-action vector
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(a1,az2,...,an). Since we intend to test the impact of action dis-
covery on what Boutilier calls coordination problems (CPs) [1],
in particular whether the number of coordination problems are re-
duced or increased, we cleanly separate the atomic action sets of
agents, so that every decision point is a coordination problem. In
our experiments we consider two agents pushing a box on a plane,
so we allow one agent to exert a force along the x-axis only (we call
it the z-agent), and the other along the y-axis only (the y-agent. By
removing overlap in the directionalities of the forces, we ensure
that the agents do not trivially coordinate at some decision points.
This serves the purpose of isolating the impact of action discovery
on CPs, with the impact on accidental coordination being removed.
Note however, that this is only meant for our experimental set-up,
and it is not necessary to preclude overlaps in the agents’ atomic
action sets. Also, agents can achieve such clean separation of their
action sets by prior agreement in cooperative domains.

We allow each agent to test for feasibility of a new action using
the same method as in Sarsa-AD. If a new action passes the test,
then all agents discover that action and append their action sets
in that joint-state, by the appropriate component of the discovered
action. Therefore, if an action (z',y’) is discovered, the z-agent
appends x’ as a new action in its own list of actions in that state, and
also includes y’ as a new action of the other agent in that state. The
y-agent performs the corresponding actions as well. This means
that with each discovery, the joint action table of each agent grows
at the rate of O(|A|" ') where A is the size of the action set of each
agent. Given such a phenomenal growth in decision complexity, it
is unclear if action discovery will benef t multi-agent learning.

Figure 1(d) shows the total sample complexity (95% conf dence
intervals over 20 runs) of JAL Sarsa learning with and without
action discovery, when two agents learn to coordinate in push-
ing a block from one corner to the diagonally opposite corner on
a square map with a square obstacle in the center. Surprisingly,
action discovery improves the sample complexity in JAL as well.
This clearly demonstrates that the impact of action discovery on
the number of CPs (which is reduced) outweighs the impact on de-
cision complexity (which is worsened), such that the net sample
complexity is signif cantly lower with action discovery. The re-
sult reaff rms our f nding that action discovery is indeed a potent
tool for reinforcement learner(s) to improve sample complexity of
learning, through the counter-intuitive process of worsening the de-
cision complexity.
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